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Abstract

We consider the backward parabolic equation{
ut +Au = f(t, u(t)), 0 < t < T,

u(T ) = g,

where A is a positive unbounded operator and f is a nonlinear function sat-
isfying a Lipschitz condition, with an approximate datum g. The problem
is severely ill-posed. Using the truncation method we propose a regularized
solution which is the solution of a system of differential equations in finite di-
mensional subspaces. According to some a priori assumptions on the regularity
of the exact solution we obtain several explicit error estimates including an
error estimate of Hölder type for all t ∈ [0, T ]. An example on heat equations
and numerical experiments are given.
Mathematics Subject Classification 2000: 35R30, 35K05, 65J22.
Keywords: nonlinear backward problem, ill-posed problem, regularization, trun-
cation method.

1 Introduction

Let H be a real or complex Hilbert space with the inner product (., .) and the norm
||.||. Let A : D(A) → H be a positive self-adjoint unbounded operator and let
f : [0, T ] × H → H. We consider the problem of finding a function u : [0, T ] → H
such that {

ut + Au = f(t, u(t)), 0 < t < T,

u(T ) = g,
(1.1)

where the datum g ∈ H is given with an error of order ε. We shall always assume that
A admits an orthonormal eigenbasis {ϕn}∞n=1 corresponding to eigenvalues {λn}∞n=1,
where

0 < λ1 ≤ λ2 ≤ ... and lim
n→∞

λn = ∞,
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and that f satisfies the Lipschitz condition

∥f(t, w1)− f(t, w2)∥ ≤ k ∥w1 − w2∥ , (1.2)

where k ≥ 0 is a constant independent of t, w1, w2.
In spite of the uniqueness (see Theorem 2), Problem (1.1) is severely ill-posed,

e.g. a small error of datum g may cause a large error of the corresponding solution
(if exists). Indeed, from the formal form

u(t) =
∞∑
n=1

e(T−t)λn (ϕn, g)−
T∫
t

e(s−t)λn (ϕn, f(s, u(s))) ds

ϕn

we can see that the instability is due to the fast growth of e(T−t)λn as λn → ∞.
Therefore, regularization methods are necessary to make the numerical computation
possible.

Let us first review some results on the homogeneous problem, i.e. Problem (1.1)
with f = 0. In this case there are several regularization methods in the literature such
as the quasi-reversibility method of Lattès and Lions [8], the Tikhonov regularization
method [13], the Gajewski and Zacharias’ method based on eigenfunctions expansion
[3], the method of semi-group and Sobolev equation [2, 12]. In the pioneering work
in 1967, Lattès and Lions [8] introduced the quasi-reversibility method in which they
added a ”corrector” into the main equation to get the well-posed problem{

ut + Au+ εA∗Au = 0,

u(T ) = g.

However, the stability magnitude of the approximating problem is of order eT/ε which
is very large for ε > 0 small. In 1984, Showalter [11] proposed the method of quasi-
boundary value problem in which he added a corrector into the final value to get the
well-posed problem {

ut + Au = 0,

εu(0) + u(T ) = g.

The stability magnitude of the approximating problem in this case is of order ε−1.
However, while this method may give approximation for any fixed t > 0, it is still
difficult to derive an explicit error estimate at the original time t = 0. In 2005,
Denche and Bessila [1] used a variant of this method to give an error estimate of
logarithmic type at t = 0 provided that u(0) ∈ D(A). Recently, Hao et al. [5]
employed the original method in [11] to improve the approximation. More precisely,
they considered three assumptions on the exact solution

||u(0)|| ≤ E0, (1.3)
∞∑
n=1

λ2β′

n |(ϕn, u(0))|2 ≤ E2
1 , (1.4)

∞∑
n=1

e2βλn |(ϕn, u(0))|2 ≤ E2
2 , (1.5)
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where β, β′ stand for positive constants. Under the very weak condition (1.3) they
obtained an error estimate of Hölder type at any fixed t ∈ (0, T ). If (1.4) holds
then they had an error estimate of logarithmic type at t = 0 and if (1.5) holds then
they even had an error estimate of Hölder type at t = 0. Note that the assumption
u(0) ∈ D(A) in [1] is a special case of (1.4) with β = 1.

Although there are many works on the homogeneous problem, the literature on
inhomogeneous cases, and in particular on the nonlinear case, is quite scarce. In 1994,
Long and Dinh [9] used the semi-group method of Ewing [2] to treat the nonlinear
case and attained an error estimate of order t−2(ln(1/ε))−1 for each t > 0. This
estimate is of logarithmic type at any fixed t > 0 but useless at t = 0. More recently,
in 2008, Trong and Tuan [15] improved the quasi-reversibility method to give an
approximation of order εt/T for t > 0 and (ln(1/ε))−1/2 at t = 0. However they
required a condition somehow similar to u(t) ∈ D(eTA) for all t ∈ [0, T ] which is
equivalent to (1.8) below with β = T .

The aim of the present paper is to generalize the results in [5] and improve the
existing results for nonlinear case (although our approach is different from [5]). We
consider three conditions

∞∑
n=1

e2λn min{t,β} |(ϕn, u(t))|2 ≤ E2
0 , (1.6)

∞∑
n=1

λ2β′

n e2λn min{t,β} |(ϕn, u(t))|2 ≤ E2
1 , (1.7)

∞∑
n=1

e2βλn |(ϕn, u(t))|2 ≤ E2
2 (1.8)

for all t ∈ [0, T ], where β, β′ stand for positive constants. We shall show that (1.6)
is sufficient to get an approximation with error estimate of Hölder type at any fixed
t ∈ (0, T ]. Moreover if either (1.7) or (1.8) holds then we obtain an error estimate of
logarithmic type or Hölder type for all t ∈ [0, T ], respectively.

Let us briefly discuss on the motivation of the conditions (1.6)-(1.8). Technically,
they require that the exact solution u(t) of Problem (1.1) must be very smooth,
especially for small time t ∈ [0, β]. To make a comparison, we note that in the
homogeneous case, namely f = 0, (1.6)-(1.8) reduces to the conditions (1.3)-(1.5)
above, which are used in [5], due to the identity

eλnt (ϕn, u(t)) = (ϕn, u(0)) for all n ∈ N.

Moreover, many earlier works on the nonlinear case, for example [15, 16], needed that
(1.8) holds for β = T . In this case, our assumptions (1.6)-(1.8) seems a litte slighter
since, for instance, we do not demand the following condition on the final value

∞∑
n=1

e2Tλn |(ϕn, u(T ))|2 < ∞.

We mention that while such a condition is reasonable for the homogeneous problem, it
is not necessarily true for inhomogeneous cases. In our opinion, the open problem on
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relaxing the assumptions on the exponential growth in (1.6)-(1.8) is very interesting,
but also really difficult.

Let us sketch our method. As we discussed above, the fast growth of the term
e(T−t)λn is the source of the instability of Problem (1.1). A natural way to treat it is
to restrict the problem in a finite dimensional subspace, an idea from the truncation
method. More precisely, we shall use the following well-posed problem{

ut + Au = PMf(t, u(t)), 0 ≤ t < T,

u(T ) = PMg,
(1.9)

where PM is the orthogonal projection onto the eigenspace span{ϕn|λn ≤ M}, i.e.

PMw =
∑

λn≤M

(ϕn, w)ϕn for all w ∈ H.

As we shall see later, Problem (1.9) is well-posed and its solution is a local approx-
imation (namely for t > T − β) of the exact solution of the original problem (1.1).
Our method is first to compute the solution for t ∈ [T − t1, T ) for some 0 < t1 < β,
then use the resulting value at T − t1 to calculate the solution for t ∈ [T −2t1, T − t1),
and so on.

The rest of the paper is organized as follows. In Section 2 we shall consider the
well-posed problem (1.9) and its relation to the original problem (1.1). In Section
3, we construct a regularized solution and give error estimates. A heat equation is
considered in Section 4 as an example for our construction and a numerical test is
implemented in Section 5 to verify the effect of our method. We finish the paper with
some concluding remarks in Section 6.

2 Well-posed problem

In this section we consider the well-posed problem (1.9) and error estimates between
its solution and the solution of the original problem (1.1).

Theorem 1 (Well-posed problem). For each g ∈ H Problem (1.9) has a unique
solution u ∈ C1([0, T ],PM(H)). Moreover, the solution depends continuously on the
datum in the sense that if ui is the solution with respect to gi, i = 1, 2, then

∥u1(t)− u2(t)∥ ≤ e(k+M)(T−t) ∥g1 − g2∥ .

Proof. Note that if u is a solution of (1.9) then u(t) ∈ PM(H) for all t ∈ [0, T ].
Define GM(t, w) = −Aw + PMf(t, w). Thus Problem (1.9) is a system of nonlinear
differential equations {

ut = GM(t, u(t)), 0 < t < T

u(T ) = PMg

on the finite dimensional subspace PM(H). Using the fact ∥Aw∥ ≤ M ||w|| for w ∈
PM(H) and the Lipschitz condition (1.2) we deduce that

∥GM(t, w1)−GM(t, w2)∥ ≤ (k +M) ∥w1 − w2∥ for all w1, w2 ∈ PM(H).
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The well-posedness of the above system thus follows from the Picard-Lindelöf theo-
rem, a basis result in ODEs (see, e.g., [7]).

We call u ∈ C([0, T ], H) a (weak) solution of Problem (1.1) if

(ϕn, u(t)) = eλn(T−t)(ϕn, g)−
T∫
t

eλn(s−t)(ϕn, f(s, u(s)))ds (2.1)

for all n = 1, 2, ... Note that u is a solution of Problem (1.9) if and only if (2.1) holds
for all n such that λn ≤ M and (ϕn, u(t)) = 0 otherwise.

A simple analysis shows that Problem (1.9) approximates Problem (1.1) in the
sense that if uj is the solution of Problem (1.9) with (g,M) = (gj,Mj) and

lim
j→∞

Mj = ∞, lim
j→∞

uj = u in C([0, T ], H),

then u is a (weak) solution of Problem (1.1) with g := limj→∞ gj. However it is still
unknown if the convergence of solutions of Problem (1.9) occurs, and even if it does
then we still know nothing about the convergence rate. At this point some a priori
assumptions on the regularity of the exact solution of Problem (1.1) are necessary.
The following lemma gives some error estimates between the solutions of two problems
(1.9) and (1.1).

Lemma 1. Assume that Problem (1.1) with g = g0 ∈ H has a weak solution u0 ∈
C([0, T ], H). For any ε > 0, let gε ∈ H such that ||gε − g0|| ≤ Eε, where E is a
constant independent of ε. Denote by uε the solution of Problem (1.9) with g = gε
and M = log(1/ε)/τ , for some τ ≥ T .
(i) If u0 satisfies (1.6) with β ≥ T then

∥uε(t)− u0(t)∥ ≤ Cεt/τ for all t ∈ [0, T ].

(ii) If u0 satisfies (1.7) with β ≥ T then

∥uε(t)− u0(t)∥ ≤ Cmax{(log(1/ε)−β′
, ε(τ−T )/τ}εt/τ for all t ∈ [0, T ].

(iii) If u0 satisfies (1.8) then

∥uε(t)− u0(t)∥ ≤ Cmax{ε(β−T )/τ , ε(τ−T )/τ}εt/τ for all t ∈ [0, T ].

Here C = C(E, k, T, u0) stands for a positive constant independent of t and ε.

Remark 1. (1) In the homogeneous case (f = 0) the conditions (1.3)-(1.4) imply
(1.6)-(1.7), respectively, with β = T . In this case uε is a good approximation for u0

for all t ∈ (0, T ).
(2) In (ii) if τ > T then we get an error estimate of logarithm type at t = 0.
(3) In (iii) if β > T and τ > T then we get an error estimate of Hölder type for

all t ∈ [0, T ]. However if β < T then the estimate in (iii) is just useful if t is near T ,
namely t > T − β.
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Proof. (i) Using the Parseval equality, the representation (2.1) and the Lipschitz
condition (1.2) we have

∥uε(t)− PMu(t)∥2 =
∑

λn≤M

|(ϕn, u(t)− uε(t))|2

=
∑

λn≤M

∣∣∣∣∣∣eλn(T−t)(ϕn, gε − g0)−
T∫
t

eλn(s−t)(ϕn, f(s, uε(s))− f(s, u0(s)))ds

∣∣∣∣∣∣
2

≤
∑

λn≤M

2e2M(T−t) |(ϕn, gε − g0)|2 + 2T

T∫
t

e2M(s−t) |(ϕn, f(s, uε(s))− f(s, u0(s)))|2 ds


≤ 2e2M(T−t) ∥gε − g0∥2 + 2T

T∫
t

e2M(s−t) ∥f(s, uε(s))− f(s, u0(s))∥2 ds

≤ 2e2M(T−t)ε2E2 + 2k2T

T∫
t

e2M(s−t) ∥uε(t)− u0(t)∥2 ds.

On the other hand from (1.6) with β = T one has

∥u(t)− PMu(t)∥2 =
∑

λn>M

|(ϕn, u0(t))|2

≤ e−2Mt
∑

λn>M

e2λnt |(ϕn, u0(t))|2 ≤ e−2MtE2
0 . (2.2)

From the above estimates using Parseval equality again we get

∥uε(t)− u0(t)∥2 = ∥u(t)− PMu(t)∥2 + ∥uε(t)− PMu(t)∥2

≤ e−2MtE2
0 + 2e2M(T−t)ε2E2 + 2k2T

T∫
t

e2M(s−t) ∥uε(t)− u0(t)∥2 ds.

The latter inequality can be rewritten as

e2Mt ∥uε(t)− u0(t)∥2 ≤ E2
0 + 2e2MT ε2E2 + 2k2T

T∫
t

e2Ms ∥uε(t)− u0(t)∥2 ds.

The Gronwall’s inequality implies

e2Mt ∥uε(t)− u0(t)∥2 ≤
(
E2

0 + 2e2MT ε2E2
)
e2k

2T .

Replacing M = log(1/ε)/τ with τ ≥ T we obtain

∥uε(t)− u0(t)∥2 ≤ C2e−2Mt = C2εt/τ for all t ∈ [0, T ]
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where C =
√
E2

0 + 2E2ek
2T .

(ii) If (1.7) holds with β = T then we can process as in the above proof where
the only change is to replace (2.2) by

∥u(t)− PMu(t)∥2 ≤ M−2β′
e−2Mt

∑
λn>M

λ2β′

2 e2λnt |(ϕn, u0(t))|2 ≤ M−2β′
e−2MtE2

1 .

We thus obtain

e2Mt ∥uε(t)− u0(t)∥2 ≤ M−2β′
E2

1 + 2e2MT ε2E2 + 2k2T

T∫
t

e2Ms ∥uε(t)− u0(t)∥2 ds.

Using the Gronwall’s inequality we find

e2Mt ∥uε(t)− u0(t)∥2 ≤
(
M−2β′

E2
2 + 2e2MT ε2E2

)
e2k

2T

≤ C2max{(Mτ)−2β′
, e2MT ε2}

where C =
√
τ 2β′E2

2 + 2E2ek
2T . Replacing M = log(1/ε)/τ we obtain

∥uε(t)− u0(t)∥2 ≤ C2max{(log(1/ε)−2β′
ε2t/τ , ε2(t+τ−T )/τ} for all t ∈ [0, T ].

(iii) If u0 satisfies (1.8) then we may replace (2.2) in the proof of part (i) by

∥u(t)− PMu(t)∥2 ≤ e−2Mβ
∑

λn>M

e2λnβ |(ϕn, u0(t))|2 ≤ e−2MβE2
2 .

Thus

e2Mt ∥uε(t)− u0(t)∥2 ≤ e2M(t−β)E2
2 + 2e2MT ε2E2 + 2k2T

T∫
t

e2Ms ∥uε(t)− u0(t)∥2 ds

≤ e2M(T−β)E2
2 + 2e2MT ε2E2 + 2k2T

T∫
t

e2Ms ∥uε(t)− u0(t)∥2 ds.

It follows from the Gronwall’s inequality that

e2Mt ∥uε(t)− u0(t)∥2 ≤
(
e2M(T−β)E2

2 + 2e2MT ε2E2
)
e2k

2T .

We conclude that

∥uε(t)− u0(t)∥2 ≤ C2max{e2M(T−t−β), e2M(T−t)ε2}

where C =
√

E2
2 + 2E2ek

2T . Replacing M = log(1/ε)/τ we get the desired result.

7



3 Regularized solution and error estimates

We first prove the uniqueness for Problem (1.1) before considering the regularization.

Theorem 2 (Uniqueness). For any g ∈ H Problem (1.1) has at most one solution
u ∈ C1((0, T ), H) ∩ C([0, T ], D(A)).

Here the requirement u ∈ C([0, T ], D(A)) means Au ∈ C([0, T ], H).

Proof. Assume that u1 and u2 are two solutions for (1.1). Put w = u1 − u2. Then
w(T ) = 0 and due to Lipschitz condition (1.2)

∥wt + Aw∥ = ∥f(t, u1(t))− f(t, u2(t))∥ ≤ k ∥w∥ , 0 < t < T.

This implies that w = 0 due to the theorem of Ghidaglia (see [4], Theorem 1.1). Thus
u1 = u2.

We now employ the well-posed problem (1.9) to construct a regularized solution
for Problem (1.1). Assume that Problem (1.1) has an exact solution u0 satisfying a
priori condition (1.6). If β ≥ T then Lemma 1 (i) allows us to approximate u0(t)
for any t > 0. However in general β > 0 may be small and Lemma 1 (iii) gives
an approximation for t > T − β. Our method is first to compute the solution for
t ∈ [T − t1, T ) for some 0 < t1 < β, then use the resulting solution at T − t1 to
calculate the solution for t ∈ [T −2t1, T − t1) and so on. By this way after finite steps
we return to the case β ≥ T and then we may solve the problem completely.

Theorem 3 (Regularized solutions). Assume that Problem (1.1) with g = g0 ∈ H
has a (weak) solution u0 ∈ C([0, T ], H). For any ε > 0, let gε ∈ H such that
||gε − g0|| ≤ ε. Let n0 ∈ N and t1 = T/n0. We construct a function uε : [0, T ] → H
from gε as follows. For n = 1, 2, ..., n0 put

Tn = T − (n− 1)t1, Mn =
log(1/ε)tn1

(1 + δn,n0)T1...Tn−1T 2
n

,

where δn,n0 = 1 if n = n0 and δn,n0 = 0 otherwise. Define uε(t) := wn(t) on t ∈
[Tn+1, Tn) where wn : [Tn+1, Tn] → H (n = 1, 2, ..., n0) solve the system{

∂twn + Awn = PMnf(t, w(t)), Tn+1 ≤ t < Tn,

wn(Tn) = PMn(wn−1(Tn)),
(3.1)

with w0(T1) = gε and Tn0+1 = 0.
(i) If u0 satisfies (1.6) with β = 2t1 = 2T/n0 then

∥uε(t)− u0(t)∥ ≤ Cεδt for all t ∈ [0, T ].

(ii) If u0 satisfies (1.7) with β = 2t1 = 2T/n0 then

∥uε(t)− u0(t)∥ ≤ C(log(1/ε))−β′
εδt for all t ∈ [0, T ].
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(iii) If u0 satisfies (1.8) with β = 2t1 = 2T/n0 then

∥uε(t)− u0(t)∥ ≤ Cεδ for all t ∈ [0, T ].

Here C and δ stand for positive constants independent of t and ε.

Proof. (i) Put ε1 = ε, εn+1 = ε
tn1

T1...Tn then

εn+1 = εt1/Tn
n and Mn =

log(1/εn)

(1 + δn,n0)Tn

for n = 1, 2, ..., n0.

We shall prove that for any n = 1, 2..., n0 − 1 we have

∥wn(t)− u0(t)∥ ≤ Cnεn+1, t ∈ [Tn+1, Tn),

where Cn > 0 always stands for a constant independent of t and ε. Indeed, recall
that wn is the solution of the system{

∂twn + Awn = PMnf(t, w(t)), Tn+1 ≤ t < Tn,

wn(Tn) = PMn(wn−1(Tn))

with ||wn−1(Tn)− u0(Tn)|| ≤ Cn−1εn. If n ≤ n0 − 2 then since u0 satisfies (1.8) with
β = 2t1 for all t ∈ [Tn+1, Tn], Lemma 1 (iii) with τ = Tn implies

∥wn(t)− u0(t)∥ ≤ Cnε
(t+2t1−Tn)/Tn
n ≤ Cnε

t1/Tn
n = Cnεn+1

for all t ∈ [Tn+1, Tn]. If n = n0 − 1 then since u0 satisfies (1.6) with β = 2t1 for all
t ∈ [Tn0 , Tn0−1] = [t1, 2t1], Lemma 1 (i) with τ = Tn0−1 implies

∥wn0−1(t)− u0(t)∥ ≤ Cn0−1ε
t/Tn0−1

n0−1 ≤ Cn0−1ε
t1/Tn0−1

n0−1 = Cn0−1εn0

for all t ∈ [t1, 2t1].
It remains to consider the final equation{

∂twn0 + Awn0 = PMn0
f(t, w(t)), 0 ≤ t < t1,

wn0(t1) = PMn0
(wn0−1(t1))

(3.2)

with ||wn0−1(t1)− u0(t1)|| ≤ Cn0−1εn0 . Applying Lemma 1 (i) (with τ = 2Tn0 = 2t1)
we get

∥wn0(t)− u0(t)∥ ≤ Cn0ε
t/(2t1)
n0

for all t ∈ [0, t1]. This gives the desired result.

(ii) If u0 satisfies (1.7) for β = 2t1 then for the final equation (3.2) we may apply
Lemma 1 (ii) with τ = 2Tn0 = 2t1 to get

∥wn0(t)− u0(t)∥ ≤ Cn0+1max{log(1/εn0)
−2β, ε1/2n0

}ε−t/(2t1)
n0

≤ const.Cn0+1 log(1/ε)
−2βε−t/(2t1)

n0

9



for all t ∈ [0, t1] since (εn0)
1/2 ≥ const.(log(1/εn0))

−2β′
= const.(log(1/ε))−β′

.

(iii) If u0 satisfies (1.8) for β = 2t1 then for the final equation (3.2) we may ap-
ply Lemma 1 (iii) with τ = 2Tn0 = 2t1 to obtain

∥wn0(t)− u0(t)∥ ≤ Cn0+1ε
(t+t1)/(2t1)
n0

≤ Cn0+1ε
1/2
n0

for all t ∈ [0, t1]. This completes the proof.

Remark 2. In the final equation the choice M = log(1/εn0)/(2Tn0) instead of M =
log(1/εn0)/Tn0 is crucial to get the error estimate at t = 0 in (ii) and (iii). See
Remark 1 and the discussion before the statement of Theorem 3.

Remark 3. Since Mn ≤ ln(1/ε)/(2t1) for all n, we conclude from Theorem 1 that
the stability magnitude of each equation in the system (3.1) does not exceed

exp(Mn(Tn − Tn+1)) = exp(Mnt1) ≤ ε−1/2.

It is smaller than the stability magnitude of the approximating problem in the quasi-
reversibility method, which is of order eT/ε, and the one in the quasi-boundary value
method, which is of order ε−1 (see the discussion in the introduction).

Remark 4. In this method (as we see in the examples below), the larger number
dividing step n0 corresponds to the worse error estimate. Therefore, the readers may
argue that why we do not choose, for example, n0 = 1. We mention here that in
order to have these error estimate, we need the conditions (1.6)-(1.8) to be valid for
β = 2T/n0. Thus by increasing the number dividing step n0, we may weaken the
assumptions (1.6)-(1.8) but the cost is, of course, to obtain worse error estimates.

Let us consider some examples. If we know that (1.6)-(1.8) holds for β = T , as
in [15, 16], we may simply choose n0 = 2 as in Corollary 1 below. But our method
works on even weaker condition, for example Corollary 2 below.

Corollary 1 (n0 = 2,β = T ). Let g0, gε ∈ H such that ||gε − g0|| ≤ ε. Assume that
Problem (1.1) with g = g0 has a (weak) solution u0 ∈ C([0, T ], H). Let

M1 =
ln(1/ε)

T
, M2 =

ln(1/ε)

2T

and let uε = (w1, w2) be the solution of the following system{
∂tw1 + Aw1 = PM1f(t, w1(t)), T/2 ≤ t < T,

w1(T ) = PM1(gε),{
∂tw2 + Aw2 = PM2f(t, w2(t)), 0 ≤ t < T/2,

w2 (T/2) = PM2(w1 (T/2)).

(i) If u0 satisfies (1.6) with β = T , i.e.
∑∞

n=1 e
2λnt|(ϕn, u0(t))|2 ≤ E2

0 , then

∥uε(t)− u0(t)∥ ≤

{
Cεt/T , T/2 ≤ t ≤ T,

Cεt/(2T ), 0 ≤ t < T/2.
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(ii) Moreover, if u0 satisfies
∑∞

n=1 λ
2β′
n e2λnt|(ϕn, u0(t))|2 ≤ E2

1 then

∥uε(t)− u0(t)∥ ≤ C(log(1/ε))−β′
εt/(2T ), 0 ≤ t < T/2.

In particular
sup

t∈[0,T ]

∥uε(t)− u0(t)∥ ≤ C(log(1/ε))−β′
.

(iii) Finally if u0 satisfies
∑∞

n=1 e
2λnT |(ϕn, u0(t))|2 ≤ E2

2 then

∥uε(t)− u0(t)∥ ≤ Cε(2t+T )/(4T ), 0 ≤ t < T/2.

In particular,
sup

t∈[0,T ]

∥uε(t)− u0(t)∥ ≤ C 4
√
ε.

Here C stands for a constant independent of t and ε.

Corollary 2 (n0 = 3,β = 2T/3). Let g0, gε ∈ H such that ||gε − g0|| ≤ ε. Assume
that Problem (1.1) with g = g0 has a (weak) solution u0 ∈ C([0, T ], H). Let

M1 =
ln(1/ε)

T
,M2 =

ln(1/ε)

2T
, M3 =

ln(1/ε)

4T

and let uε = (w1, w2, w3) be the solution of the following system{
∂tw1 + Aw1 = PM1f(t, w1(t)), 2T/3 ≤ t < T,

w1(T ) = PM1(gε),{
∂tw2 + Aw2 = PM2f(t, w2(t)), T/3 ≤ t < 2T/3,

w2 (2T/3) = PM2(w1 (2T/3)),{
∂tw3 + Aw3 = PM3f(t, w3(t)), 0 ≤ t < T/3,

w3 (T/3) = PM3(w2 (T/3)).

(i) If u0 satisfies
∑∞

n=1 e
2λn min{t,2T/3}|(ϕn, u0(t))|2 ≤ E2

0 then

∥uε(t)− u0(t)∥ ≤


Cεt/T−1/3, 2T/3 ≤ t ≤ T,

Cεt/(2T ), T/3 ≤ t < 2T/3,

Cεt/(4T ), 0 ≤ t < T/3.

(ii) Moreover, if u0 satisfies
∑∞

n=1 λ
2β′
n e2λn min{t,2T/3}|(ϕn, u0(t))|2 ≤ E2

1 then

∥uε(t)− u0(t)∥ ≤ C(log(1/ε))−β′
εt/(4T ), 0 ≤ t < T/3.

(iii) Finally if u0 satisfies
∑∞

n=1 e
λn4T/3|(ϕn, u0(t))|2 ≤ E2

2 then

∥uε(t)− u0(t)∥ ≤ Cεt/(4T )+1/12, 0 ≤ t < T/3.

Here C stands for a constant independent of t and ε.
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4 Application to a heat equation

In this section we give an explicit example for Problem (1.1). Let us consider the
backward heat equation

ut −∆u = f(x, t, u(x, t)), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(T ) = g, x ∈ Ω,

(4.1)

where Ω = (0, π)N ⊂ RN and f satisfies the Lipschitz condition

|f(x, t, w1)− f(x, t, w2)| ≤ k |w1 − w2| (4.2)

for some constant k ≥ 0 independent of (x, t, w1, w2) ∈ Ω × [0, T ] × R × R. This
is a particular case of (1.1) where H = L2(Ω) and A = −∆, which associates with
the homogeneous Dirichlet boundary condition. This operator admits an eigenba-
sis ϕℓ(x) = (2/π)N/2 sin(ℓ1x1)... sin(ℓNxN) for L2(Ω) corresponding to the eigenval-
ues λℓ = |ℓ|2. Here we denote x = (x1, ..., xN) ∈ RN , ℓ = (ℓ1, ..., ℓN) ∈ NN and
|ℓ| =

√
ℓ21 + ...+ ℓ2N . The pointwise Lipschitz condition (4.2) ensures the functional

Lipschitz condition (1.2).
The heat equation (4.1) in one dimension has been considered by many authors,

e.g. [10, 14, 16]. In 2005, Quan and Dung [10] offered a regularized solution by semi-
group method. However, they were able to give error estimate only in a very special
case that the exact solution has a finite Fourier series expansion and the Lipschitz
constant k > 0 is small enough. In 2007, Trong et al. [14] used the quasi-boundary
value method to construct a regularized solution which gives an approximation of
order ϵ

t
T for t > 0 and (ln(1/ε))1/4 at t = 0. Very recently, Trong and Tuan [16]

improved this method to give an error estimate of order εt/T (ln(1/ε))t/T−1 for all
t ∈ [0, T ]. However they required a very strong condition

sup
t∈[0,T ]

∑
ℓ

|ℓ|4e2T |ℓ|2 |(ϕℓ, u(t))L2 |2 < ∞.

Moreover, the approximation at t = 0 was still of logarithm type.
We now apply our construction of the regularized solution in Section 3 to the heat

equation (4.1). Of course we have all regularization results in Theorem 3. Moreover
we have the following estimate in higher Sobolev spaces Hp(Ω). We shall use the
usual norm

∥w∥Hp(Ω) =

√∑∥∥∥∥ ∂mw

∂xm1
1 ...∂xmN

N

∥∥∥∥2

L2

where the sum is computed in the set

{m = (m1, ...,mN)|mi = 0, 1, 2, ...;m1 + ...+mN ≤ p}.

Theorem 4 (Error estimate in higher Sobolev spaces). Assume that f satisfies the
Lipschitz condition (4.2) and that Problem (4.1) with g = g0 has a (weak) solution
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u0 ∈ C([0, T ], L2(Ω)). Let n0 ∈ N and t1 = T/n0. For any gε ∈ L2(Ω) such that
||gε − g0||L2 ≤ ε we construct uε as in Theorem 3. If u0 satisfies (1.8) with β = 2t1
then

∥uε(t)− u0(t)∥Hp(Ω) ≤ Cpε
δ (ln(1/ε))p/2 for all t ∈ [0, T ].

Here Cp and δ stand for positive constants independent of t and ε.

Proof. It is straightforward to check that for any w ∈ Hp(Ω)

∥w∥2Hp(Ω) ≤
∑
ℓ

(1 + |ℓ|2 + |ℓ|4 + ...+ |ℓ|2p) |(ϕℓ, w)|2 ≤ 2
∑
ℓ

|ℓ|2p |(ϕℓ, w)|2. (4.3)

Note that the regularized solution uε(t) always belongs to the finite dimensional
subspace PM0(H) where M0 := ln(1/ε)/T since M0 ≥ M1 ≥ ... ≥ Mn0 (here we use
the notations in Theorem 3). Thus employing (4.3) one has

∥uε(t)− PM0u0(t)∥2Hp(Ω) ≤ 2
∑

|ℓ|2≤M0

|ℓ|2p |(ϕℓ, uε(t)− u0(t))|2

≤ 2Mp
0

∑
|ℓ|2≤M0

|(ϕℓ, uε(t)− u0(t))|2

≤ 2Mp
0 ∥uε(t)− u0(t)∥2L2(Ω)

≤ C2ε2δ(ln(1/ε))p. (4.4)

In the last inequality we have used the estimate in Theorem 3 (i).
On the other hand, note that the function ξ 7→ ξpe−ξ is strictly decreasing when

ξ ≥ p. Thus if ε ≤ exp (−pT/(2β)), i.e. 2βM0 ≥ p, then we have

|ℓ|2pe−2β|ℓ|2 ≤ Mp
0 e

−2βM0 provided M0 ≤ |ℓ|2.

It implies that

∥PM0u0(t)− u0(t)∥2Hp(Ω) ≤ 2
∑

|ℓ|2>M0

|ℓ|2p |(ϕℓ, u0(t))|2

≤ 2Mp
0 e

−2βM0

∑
|ℓ|2>M0

e2β|ℓ|
2

e |(ϕℓ, u0(t))|2

≤ C2
pε

2β/T (ln(1/ε))p.

In the case ε > exp (−pT/(2β)) then we may simply used

∥PM0u0(t)− u0(t)∥Hp(Ω) ≤ ||u0||Hp(Ω) ≤ Cpε
δ(ln(1/ε))p.

Thus we always have

∥PM0u0(t)− u0(t)∥2Hp(Ω) ≤ C2
pε

2δ(ln(1/ε))p. (4.5)

The desired result thus follows from (4.4)-(4.5) and the triangle inequality.
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For example if (1.8) holds for β = T then we have the following error estimate.

Corollary 3 (n0 = 2, β = T ). Assume that (4.2) holds and that Problem (4.1) with
g = g0 has a (weak) solution u0 ∈ C([0, T ], L2(Ω)) satisfying∑

ℓ

e2T |ℓ|2 |(ϕℓ, u0(t))|2 ≤ E2
2 .

Let gε ∈ L2(Ω) such that ||gε − g0||2L ≤ ε. Let

M1 =
ln(1/ε)

T
, M2 =

ln(1/ε)

2T
.

and let uε = (w1, w2) be the solution of the following system{
∂tw1 −∆w1 = PM1f(t, w1(t)), T/2 ≤ t < T,

w1(T ) = PM1(gε),{
∂tw2 −∆w2 = PM2f(t, w2(t)), 0 ≤ t < T/2,

w2 (T/2) = PM2(w1 (T/2)).

Then for any p = 0, 1, 2, ... we have

∥uε(t)− u0(t)∥Hp(Ω) ≤

{
Cpε

t
T (ln(1/ε))p/2, T/2 ≤ t < T,

Cpε
2t+T
4T (ln(1/ε))p/2, 0 ≤ t < T/2,

where Cp stands for a positive constant independent of t, ε. In particular

sup
t∈[0,T ]

∥uε(t)− u0(t)∥Hp(Ω) ≤ Cpε
1/4(ln(1/ε))p/2.

Remark 5. The condition of Corollary 3 is similar to the ones in [14, 16] where the
error estimates at t = 0 are given in L2 and of logarithm type only.

Although the stability estimate for any higher Sobolev space is quite unusual in
the regularization theory for ill-posed problems, it did appear in some earlier papers,
for example in a recent paper [6] where the homogeneous heat equation was treated.

5 Numerical experiment

In this section we give a numerical implementation for our method. First we recall
that the well-posed problem (1.9) is just an ordinary differential equation in finite
dimension subspace. To solve this problem we may apply the standard Euler’s method
to discrete it into the form

u(tm)− u(tm+1)

∆t
= −Au(tm) + PMf(tm, u(tm)),

u(t0) = PMg.
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Here we use a uniform mesh tm = T − m∆t (m = 0, 1, 2, ...) with the meshsize ∆t.
More clearly, we shall find u(tm) under the form

u(tm) =
∑

λn≤M

Um,nϕn

where the scalar matrix Um,n is computed by induction with m as follows{
U0,n = (ϕn, g),

Um+1,n = (1 + λn∆t)Um,n − (ϕn, f(tm, u(tm)))H ∆t.

To make a comparison, we shall work on a numerical example given in [14, 16].
Let us consider the backward heat problem

ut − uxx = f(u) + 2et sin(x)− e4t(sin(x))4, (x, t) ∈ (0, π)× (0, 1),

u(0, t) = u(π, t) = 0, t ∈ (0, 1),

u(x, 1) = e sin(x), x ∈ (0, π),

where

f(u) =



u4 if u ∈ [−e10, e10],

− e10

e− 1
u+

e41

e− 1
if u ∈ (−e10, e11],

e10

e− 1
u+

e41

e− 1
if u ∈ (−e11,−e10],

0 if |u| > e11.

It is easy to see that the Lipschitz condition (4.2) holds (e.g. for k = 4e30) and the
exact solution is u0(x, t) = et sin(x). Similarly to [14, 16], we choose the approximate
datum gε(x) = (ε+ 1)e sin(x) with the error

∥gε − g∥L2 =

 π∫
0

ε2e2(sin(x))2dx

1/2

= εe

√
π

2
.

We now compute the regularized solution with respect to datum gε(x). For simplicity
we shall use the scheme given in Corollary 3 (this is the case n0 = 2, β = T ), i.e. we
solve a system of two equations{

∂tw1 − (w1)xx = PM1f(t, w1(t)), 1/2 ≤ t < 1,

w1(1) = PM1(gε),{
∂tw2 − (w2)xx = PM2f(t, w2(t)), 0 ≤ t < 1/2,

w2 (1/2) = PM2(w1 (1/2))

with M1 = log(1/ε), M2 = log(1/ε)/2.
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We first compute the numerical solution at T ′ very near T , says T ′ = 0.999. The
exact solution at this time is

u0 (x, T
′) = 2.715564905 sin(x).

The numerical solution produced by our scheme with ∆t = 1/5000 is given in Table
1. We can see that the error is nearly of order ε, which agrees with the theoretical
result that the convergence is of order εT

′/T . The corresponding results of [14] and [16],
where the same meshsize ∆t were used, are given in Table 2 and Table 3, respectively.

Table 1.
ε uε(t1) ||uε(t1)− u0(t1)||L2

ε = 10−1 2.970952310 sin(x) 0.3200806448
ε = 10−2 2.741303217 sin(x) 0.03225818991
ε = 10−3 2.718140386 sin(x) 0.003227886349
ε = 10−4 2.715822290 sin(x) + 0.6150593× 10−5 sin(3x) 0.0003226759514
ε = 10−5 2.715590416 sin(x) + 0.1788815× 10−5 sin(3x) 0.00003205140426
ε = 10−7 2.715564898 sin(x) + 0.1058266× 10−7 sin(3x) 0.1612612× 10−7

ε = 10−11 2.715564639 sin(x)− 0.2484836× 10−8 sin(3x)+ 0.3337955× 10−6

+ 0.2668597× 10−9 sin(5x)

Table 2.
ε uε(t1) ||uε(t1)− u0(t1)||L2

ε = 10−5 2.430605996 sin(x)− 0.0001718460902 sin(3x) 0.3266494251
ε = 10−7 2.646937077 sin(x)− 0.002178680692 sin(3x) 0.05558566020
ε = 10−11 2.649052245 sin(x)− 0.004495263004 sin(3x) 0.05316693437

Table 3.
ε uε(t1) ||uε(t1)− u0(t1)||L2

ε = 10−5 2.718264487 sin(x)− 0.005466473792 sin(6x) 0.002729464336
ε = 10−7 2.715833791 sin(x)− 0.005461493459 sin(6x) 0.0002987139108
ε = 10−11 2.715552177 sin(x)− 0.005518178192 sin(6x) 0.0000431782905

Remark 6. In Table 1 the error corresponding ε = 10−11 is not better than the one
corresponding ε = 10−7. In our opinion, this is due to the limit of the discrete process
rather than a theoretical reason. For example, by choosing a finer meshsize, namely
∆t = 10−5, we obtain a better error 0.1544632662 × 10−7 for numerical solution
corresponding to ε = 10−11.

We now compute the regularized solution for all t, and in particular at t = 0
(these works were not given in [14, 16]). Our regularized solution corresponding to
ε = 10−3, which is computed in the meshsize ∆t = 1/100, is displayed in Figure 1
while the exact solution is plotted in Figure 2 in order to give a visual comparison.
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Figure 2. Regularized solution

t

In particular, the regularized solution at t = 0 with ε = 10−3 is 0.9970179573 sin(x)
and its error to the exact solution u0(x, 0) = sin(x) is

||uε(0)− u0(0)||L2 = 0.003737436274,

which is very reasonable.

17



6 Conclusion

The paper considers the regularization problem for a class of nonlinear backward
parabolic equations in abstract Hilbert spaces, namely Problem (1.1). In many earlier
works on the nonlinear problem, e.g. [14, 15, 16], while ones may obtain an Hölder-
type error estimate at any fixed time t > 0, an explicit error estimate at t = 0 is
still difficult and was given in logarithm type only. The present paper proposes a
regularized solution with several error estimates which includes an error estimate of
Hölder type for all t ∈ [0, T ]. In the homogeneous case our results are comparable
to [5] while in the nonlinear case they improve the results in many earlier works, e.g.
[9, 10, 14, 15, 16]. Moreover, our regularization is simple enough for a numerical
setting and the numerical results seems satisfactory.

However our method is still a little theoretical since in general the power β in con-
ditions (1.6)-(1.8) is unknown in practice. We mention that while such conditions are
reasonable for the homogeneous problem (even for β = T ), they are not necessarily
true for inhomogeneous cases. However, up to my knowledge, such assumptions on
the exponential growth of the exact solution are crucial in various works on the reg-
ularization theory for the nonlinear ill-posed problem. Finding a way to relax these
assumptions is an interesting, but difficult, problem for future works.

Acknowledgments: I would like to thank Prof. Dang Duc Trong and Dr. Nguyen
Huy Tuan for fruitful discussions on backward heat problems. I wish to thank the
referees for many constructive comments leading to the improved version of this ar-
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